
67

3
Statistical Properties of Spatially
Autocorrelated Data

3.1 Introduction

Waldo Tobler made famous his “first law of geography,” which states that “everything is
related to everything else, but near things are more related than distant things” (Tobler,
1970, p. 236), but he was obviously not the first person to realize this. Awareness of the
need to take into account the effect of temporal and spatial proximity when carrying out
statistical analyses goes back at least as far as Student (1914). Nowadays, data that obey the
first law of geography are said to be spatially autocorrelated. The prefix “auto” comes from
the Greek word αυτό, meaning “self.” Thus, to say a feature is spatially autocorrelated
means etymologically that its attribute values are correlated with attribute values of the
same feature at nearby locations. Different authors define the term spatial autocorrelation
differently. Anselin and Bera (1998, p. 241) provide a concise verbal definition: “spatial
autocorrelation can be loosely defined as the coincidence of value similarity with loca-
tional similarity.” For example, one of the quantities recorded in the Weislander survey
illustrated in Figure 1.1 is mean annual precipitation. Nearby locations would probably
tend to have similar mean annual precipitation levels. Anselin and Bera (1998) also provide
a more formal definition as follows: a nonzero spatial autocorrelation exists between attri-
butes of a feature defined at locations i and j if the covariance between feature attribute
values at those points is nonzero. If this covariance is positive (i.e., if data with attribute
values above the mean tend to be near other data with values above the mean), then we
say there is positive spatial autocorrelation; if the converse is true, then we say there is nega-
tive spatial autocorrelation. Positive autocorrelation is much more common in nature, but
negative autocorrelation does exist, for example, in the case of conspecific allelopathy, the
tendency of some plants to inhibit the nearby growth of other plants of the same species
(Rice, 1984). Nevertheless, in this book whenever we use the term spatial autocorrelation
we will mean positive spatial autocorrelation.

The areal data discussed in this book generally consist of sets of attribute values Y x y(,)
together with the coordinates x and y describing the location of each attribute value. The
locations (,)x y are fixed and not random, but the attribute values Y are assumed to have a
random component. Errors in measuring the location of the phenomenon are incorporated
into the uncertainty in the value of the phenomenon at each location. The coordinates
themselves are assumed to be measured without error. For example, Figure 1.3 shows the
values of clay content in a farmer’s field. Error in this case would represent an inaccurate
measurement of clay content, but the locations are assumed to be measured accurately.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

68 Spatial Data Analysis in Ecology and Agriculture Using R

Consider now the process of modeling a data set such as that of Figure 1.3. A statistical
model includes a random variable, that is, very roughly speaking, a quantity that is sam-
pled and whose values are distributed according to some probability distribution. A more
rigorous discussion of random variables is provided by Larsen and Marx (1986, p. 104).
A random variable that is measured at a set of locations is called a random field (Besag, 1974,
Cressie, 1991, p. 8). Any particular set of measurements of the random field (e.g., the set of
clay content measurements illustrated in Figure 1.3), is called a realization of the random
field (or of the random variable). The random variable may not actually be measurable at
every point in the domain. For example, if we are measuring tree yield in an orchard, this
quantity is not measurable at locations where there is no tree. The manner in which we
deal with this situation will depend on the class of spatial data model (geostatistical or
areal, see Section 1.2.1) that we employ in the analysis.

Each data record in every spatial data set is identified as having a location specified by
an (,)x y coordinate pair or by a polygon. For the clay content data of Figure 1.3, for exam-
ple, this location is the point at which the measurement is made. Figure 1.5 shows a spatial
mosaic whose cells are polygons defined by land cover class. Observations were made in
these cells of the presence or absence of the western yellow-billed cuckoo, with no more
than one observation site in each cell. The observations were made by playing a recording
of the bird’s call and listening for a response. In this case, there is no natural choice for
the precise location of the coordinate pair describing the observation site, and it is simply
identified as being in the polygon.

3.2 Components of a Spatial Random Process

3.2.1 Spatial Trends in Data

It is often convenient to model a spatial random field as the sum of a collection of sepa-
rate components, each with its own properties. Cressie (1991, p. 112) presents a model for
spatial variability in which the data consist of the sum of four components with differing
scales of variability. Burrough and McDonnell (1998, p. 134) describe a slightly simpler
system that will suit our needs. In this system, the data are represented as consisting of
the sum of three components. These are (1) a “structural,” or “deterministic” component
that may consist of a trend, of large scale variation, or both; (2) a spatially autocorre-
lated random process; and (3) an uncorrelated random variable representing uncorrelated
 random variation and measurement error. Displaying the (,)x y coordinates explicitly, one
can write this as

 Y x y T x y x y x y(,) (,) (,) (,)= + +η ε . (3.1)

Here T x y(,) represents the deterministic trend, η(,)x y represents the spatially
 autocorrelated random process, and ε (,)x y represents the uncorrelated random variable.
This idea is shown schematica1lly in Figures 3.1 and 3.2 (code is also included to create
Figure 3.1 using ggplot()). If, for example, Y x y(,) represents mean annual precipitation at
the point (,)x y , then we might imagine that there is some underlying, large-scale variabil-
ity that may be modeled as the trend T x y(,) (e.g., due to elevation, slope, and aspect). There
are smaller scale components that, taken together, may be modeled as the autocorrelated

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

69Statistical Properties of Spatially Autocorrelated Data

random variable η(,)x y (e.g., due to small scale topographic features and low altitude
air movement), and there are still other random components that taken together may be
 modeled as uncorrelated variability and measurement error ε (,)x y (Haining, 2003, p. 185).
It is important to emphasize that in dealing with real data, any decomposition of the form of
Equation 3.1 cannot be unique. To quote Cressie (1991, p. 114), “one person’s deterministic
trend may be another person’s correlated error structure.” Keep this in mind as you read
the following discussion.

In order to separate a spatial data set into components, one must first estimate the trend
term T x y(,) and, if it is large enough to warrant attention, subtract it from the data. The
trend is often estimated using either a linear regression model (Appendix A.2) or the
median polish technique, although a generalized additive model can also be very effec-
tive (Dormann et al., 2007, see Exercise 9.3). To use a linear regression model, one fits
the data with a regression function in which the predictor variables are functions of the
 coordinates x and y. The simplest such function is a first-degree model of the form

 Y x yi i i i= + + +β β β ε0 1 2 , (3.2)

where Yi is the measured value at the location (,), , ...,x y i ni i = 1 . Other more complex mod-
els, either linear regression models with higher degree terms in the coordinates or non-
linear regression or generalized additive models, may also be used (Unwin, 1975). The
parameters of the regression model may be estimated using ordinary or nonlinear least
squares, depending on the model. One must exercise caution in interpreting the results of
least squares with polynomial terms since the regression may be ill-conditioned (i.e., have
numerical properties that lead to an inaccurate solution) (Haining, 2003, p. 326).

FIGURE 3.1
Plot of a cross section of the variable Y x y(,) shown in perspective in Figure 3.2a.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

70 Spatial Data Analysis in Ecology and Agriculture Using R

To illustrate the process of fitting a trend surface, we will employ a made-up example
consisting of a random field Y x y(,) satisfying Equation 3.1 with the following components.
The deterministic component T x y(,) is a logistic function of the form

 T x y
ae

e

cy

cy(,) =
+

−

−1
. (3.3)

where a has the value 2 and c has the value 1. Figure 3.2a shows a perspective plot of the
random variable Y x y(,) whose cross section is shown in Figure 3.1. Figure 3.2b shows the
actual trend surface component T x y(,) First, we estimate the trend T x y(,) using linear
regression with Equation 3.2. The R function most commonly used for ordinary linear
regression is lm(). This function is discussed in Appendix A.2. The R package spatial
(Venables and Ripley, 2002, p. 420) contains a function surf.ls() that can also be used to
fit a trend surface by least squares, but for this simple case doing it directly with lm() is
easier and more transparent. The values of Y x y(,) are stored in a data frame called Y.df.
The statements that create this data frame are in the code that accompanies this book. The
code to compute the estimated trend and display a perspective plot on a 20 by 20 grid is
the following.

x
y

Y

x
y

T
(x,y)

(a) (b)

(c) (d)

x
y

F
it

x y

F
it

FIGURE 3.2
(a) Perspective plot of a random field Y x y(,) made up of a trend surface, an autocorrelated random component,
and an uncorrelated random component; (b) trend T x y(,) of the random field; (c) linear regression estimate of
T x y(,); (d) median polish estimate of T x y(,).

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

71Statistical Properties of Spatially Autocorrelated Data

> model.lin <- lm(Y ~ x + y, data = Y.df)
> coef(model.lin)
 (Intercept) x y
 -0.435929572 0.143930575 0.000212603
> trend.lin <- predict(model.lin)
> Y.lin <- matrix(trend.lin, nrow = 20)
> Fit <- 4 * Y.lin
> persp(x, y, Fit, theta = 225, phi = 15, scale = FALSE)

The first argument in lm() is the regression formula (see Appendix A.2), and the second is
the source of the data. The estimated regression coefficients are b0 = −0.436 b1 = 0.144, and
b3 = 0.0002. The function predict() gives the predicted values of the linear model at the
data points. The next two lines of code generate the trend surface shown in Figure 3.2c.
The function persp(x, y, Y, theta, phi, scale...) displays a perspective plot of
Y as a function of x and y. The arguments theta and phi give the azimuth and latitude
from with the plot is viewed, and scale is a logical argument that, if true, allows each axis
to be scaled independently. In lieu of this, we simply multiply the z component by four
(obtained by trial and error) to exaggerate it.

The second approach to fitting a trend surface, median polish, is a nonparametric method,
that is, one in which no assumptions are made about the distribution of the error terms,
in the way that they are with linear regression. Median polish is an iterative procedure
originally described by Tukey (1977) and discussed by Emerson and Hoaglin (1983) and
Cressie (1991, p. 185). At each iteration, one alternately subtracts row and column medians
from the data set. The R function that performs median polish is medpolish(). The code
to carry out the operations is

> Y.trend <- matrix(Y.df$Y, nrow = 20)
> model.mp <- medpolish(Y.trend)
> Y.mp <- Y.trend - model.mp$residuals
> Fit <- 4 * Y.mp
> persp(x, y, Fit, theta = 225, phi = 15, scale = FALSE)

The median polish trend surface of the simulated data set is shown in Figure 3.2d. In this
example, the median polish fit more accurately represents the trend surface, and because
of the logistic shape of this surface, median polish would probably still be more accurate
even if higher order powers of x and y were included in the regression in Equation 3.2.

The choice of method for trend estimation depends on the application, and, to some
extent, on the trend surface. Median polish frequently provides a more accurate fit ˆ(,)T x y
of the trend, which is useful for visualization and, if the trend surface is complex, sub-
tracting this estimate from Y x y(,) provides a more accurate prediction ˆ(,) ˆ(,)η εx y x y+ of
the random quantity represented as the sum η ε(,) (,)x y x y+ in Equation 3.1. On the other
hand, the parameter values generated by fitting a regression model can provide useful
summary information, such as whether the trend is stronger in the x or y direction, or
whether it has a strong quadratic component or interaction, etc. The parameter values are
also useful in comparing trends of different attributes of a data set.

We can compare the methods using a real data set. Field 1 of Data Set 4 has the shape of
a trapezoid about twice as long in the north-south direction as in the east-west direction
(see Figure 3.4a below). The contents of the file Set4.196sample.csv are loaded into the data
frame data.Set4.1 using the code in Appendix B.4. There is a strong north-south trend
in sand content. The data for plotting with the function persp() must be in the form of a
matrix, so we make use of the Row and Column data used to identify the sample locations
(Appendix B.4) to construct a matrix using a simple for loop.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

72 Spatial Data Analysis in Ecology and Agriculture Using R

> Sand <- matrix(nrow = 13, ncol = 7)
> for (i in 1:86){
+ Sand[data.Set4.1$Row[i], data.Set4.1$Column[i]] <-
+ data.Set4.1$Sand[i]
+ }

The percent sand values range up to about 45%. Rather than using the scale argument
of the function persp, we simply scale the figure manually by multiplying the row and
column numbers of the sample locations by 3, again obtained by trial and error.

> North <- 3 * 1:13
> West <- 3 * 1:7
> persp(North, West, Sand, theta = 30, phi = 20,
+ zlim = c(0,45), scale = FALSE) # Fig. 3.3a

The resulting perspective plot is shown in Figure 3.3a. Because of the curvature of the plot
in the y (north-south) direction, it appears that a linear regression model fit should include
quadratic terms, at least in this direction. We again use the function lm() to fit the trend.

North

W
es

t

S
and

North

W
es

t

T
rend

North

W
es

t
M

edP
olish

(a) (b)

(c)

FIGURE 3.3
Perspective views of the sand data of Field 1 of Data Set 4: (a) actual data; (b) trend surface estimated by linear
modeling including second-order terms; (c) trend surface estimated by median polish.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

73Statistical Properties of Spatially Autocorrelated Data

> trend.lm <- lm(Sand ~ Row + Column + I(Row^2) +
+ I(Column^2) + I(Row*Column), data = data.Set4.1)

The expressions such as I(Row^2) are used to indicate the evaluation of a function
such as Row2. The fitted model is ˆ(,)T x y x y xy y= + − − +22 42 1 29 1 95 0 21 0 28 2; the x2
coefficient is very small and has been omitted. This function captures the main feature
of the trend: its rapid increase in the y direction at the south end of the field. The slight
increase in the x (east-west) direction in the north end as well as the interaction may well
be spurious, but in any case, they are not pronounced (Figure 3.3b). The median polish
approximation (Figure 3.3c) appears to fit the data better than the linear model in the y
direction and about the same in the x direction (where there is little if any trend).

One of the main reasons for computing the trend often is to remove it. Figure 3.4a shows
a bubble plot of Field 4.1 in which the size of the circle is proportional to the sand content.

592000 592200 592400 592600

42
70

40
0

42
70

60
0

42
70

80
0

42
71

00
0

Field 4.1 Sand Content

Easting

N
or

th
in

g

Percent Sand

15

30

45

592000 592200 592400 592600

42
70

40
0

42
70

60
0

42
70

80
0

42
71

00
0

Linear Detrending

Easting

N
or

th
in

g

Percent Sand

-10
0
10

592000 592200 592400 592600

42
70

40
0

42
70

60
0

42
70

80
0

42
71

00
0

Median Polish Detrending

Easting

N
or

th
in

g

Percent Sand

-10
0
10

(a) (b)

(c)

FIGURE 3.4
(a) Thematic bubble maps of sand content data of Field 1 of Data Set 4: (actual data); (b) data after trend removal
using the linear model; (c) data after trend removal using median polish. The size of the circles represent the
sand content values.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

74 Spatial Data Analysis in Ecology and Agriculture Using R

Equation 3.1 indicates that the quantity ˆ(,) ˆ(,) (,) ˆ(,)η εx y x y Y x y T x y+ = − (here as well as
generally in this book the hats are used to indicate estimated values) should contain little
if any trend; this quantity is referred to as the detrended data. Figure 3.4b and c show the
detrended sand content data based on linear model and on median polish, respectively.
A desirable property of these detrended data is to be stationary. This concept is discussed
in the next section.

3.2.2 Stationarity

As stated in Section 3.1, the data described in this book are conceptualized as being a real-
ization of a random field, that is, of a set of random numbers each of which is associated
with a spatial location. To say that a data set is a realization of a random field means that
nature has assigned, according to some well-defined law, values to the random variables
that make up this data set. In theory, the assignment could be carried out again according
to the same law to produce a different set of values that would be a different realization.
Generally, one can only observe one realization of a spatial data set, and thus if one is to
infer any of the properties of the law by which the values are assigned, one must use the
measurements at different locations of that one realization, analogous to how one uses
replications in a controlled experiment (Haining, 1990, p. 33). If these measurements at
multiple locations are to be considered as if they were replications, then the law by which
they are assigned must not vary from one location to another. A spatial random process
whose properties do not vary by location is said to be stationary.

We will use a coin-tossing simulation to gain an intuitive idea of stationarity. As with
spatial stationarity described as location invariance in the previous paragraph, a time
series is stationary if its statistical properties are invariant in time. We begin by simulat-
ing a sequence of 30 tosses, each of which has a probability 0.5 of landing heads. Since
the probability is independent of time, the process is stationary. Instead of simulating the
entire set of coin tosses as a single random vector, we will use a for loop to explicitly
simulate each toss. We use the function rbinom(), which is included in the base R package
(try ?rbinom).

> set.seed(123)
> n.tosses <- 30
> head <- numeric(n.tosses)
> for (i in 1:n.tosses) head[i] <- rbinom(1,1,0.5)
> head
 [1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0

In the sequence of tosses, every value has an equal probability of turning up heads (one)
or tails (zero). By chance there is a very long run of heads towards the end of the sequence.
Now let us make each toss dependent on the previous toss.

> set.seed(123)
> n.tosses <- 30
> head <- numeric(n.tosses)
> p <- 0.5
> for (i in 1:n.tosses){
+ head[i] <- rbinom(1,1,p)
+ p <- ifelse(head[i] > 0, 0.8, 0.2)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

75Statistical Properties of Spatially Autocorrelated Data

+ }
> head
 [1] 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0

This sequence is also stationary. It is true that, for example, in this data set the probability
that the fifth toss will be a head is 0.8, because the fourth toss was a head, while the prob-
ability that the sixth toss will be a head is 0.2, because the fifth toss was a tail. However,
the same rule for determining the outcome of the toss, a probability of 0.8 that it will be the
same as the previous toss, applies for all tosses, and this independence of time of the toss
is what determines stationarity in a time series.

Next, suppose that the probability that a toss lands heads starts at a low value gradually
increases as the sequence proceeds.

> set.seed(123)
> n.tosses <- 30
> head <- numeric(n.tosses)
> p <- 0.3
> for (i in 1:n.tosses){
+ head[i] <- rbinom(1,1,p)
+ p <- p + 0.02
+ }
> head
 [1] 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1

This sequence is not stationary, because the probability of heads depends on position in
the sequence.

It would be very hard to determine based on the data which of the sequences in these
three examples is stationary and which is not. Moreover, if in the second example the
probabilities of head and tail were 0.99 and 0.01 instead of 0.8 and 0.2, it could well be the
case that the data would consist of a sequence of, for example, only heads followed by a
sequence of only tails. Nevertheless, this would be a stationary process. We can recall in
this context the comment of Cressie (1991) quoted in Section 3.2.1 that one person’s deter-
ministic trend is another person’s correlated error structure. We will have to confront this
issue again and again over the course of our analyses.

Now we return to spatial processes. For the present, we define stationarity only for areal
data such as that represented in Figure 1.3b. The most useful definition of stationarity for
areal data is second-order stationarity. A random field Y defined on a finite mosaic consist-
ing of n locations is second order stationary if (Cliff and Ord, 1981, pp. 142–143, see also
Anselin, 1988, p. 42, Isaaks and Srivastava, 1989, p. 222)

E Y

Y

Y Y cor x y x y

i

i

i j i i j j

{ } ,

var{ } ,

cov{ , } {(,) (,)},

=

=

= −

µ

σ

σ

2

2

 (3.4)

where µ and σ 2 are independent of location i, (,)x yi i and (,)x yj j are the position vectors
of locations i and j, and cor x y(,) is a correlation function depending only on the relative
locations of (,)x yi i and (,)x yj j , and not on their specific positions. A stronger definition of
stationarity, called strict stationarity, requires that the independence of location expressed

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

76 Spatial Data Analysis in Ecology and Agriculture Using R

in Equations 3.4 hold for all moments of the distribution. If the distribution is normal,
then second-order stationarity implies strict stationarity since the normal distribution is
defined by its first two moments, the mean and the variance, but this is not true for prob-
ability distributions in general. However, second-order stationarity ensures that two of the
most important statistical properties, the mean and the variance, do not vary with posi-
tion. Our original motivation for requiring stationarity was to use multiple measurements
as replications. In this context, second-order stationarity is sufficiently strong to serve the
purpose, but not so strong as to exclude data sets that we want to be able to consider
stationary.

Sometimes there are obvious reasons why spatial data are not stationary. Perhaps the
most common example is if the data involve species dispersal. By definition, the interest-
ing part of these data is generally how their pattern changes in time, and a population that
is stationary is not dispersing. Another example is if there is an obvious gradient in some
important quantity. For example, the oak distribution data in Data Set 1 are unlikely to be
stationary since the trees are heavily influenced, either directly or indirectly, by elevation,
which is on a spatial gradient. The exploratory methods described in Chapters 7 through
9 do not require spatial stationarity since they are non-spatial in nature, but the spatially
based methods described in Chapters 13 and after do assume stationarity in some sense.
In the case of regression methods, however, often it is not stationarity of the data that is
required but rather stationarity of the residuals. Sometimes the residuals of a properly
parameterized regression model will be stationary (or at least close enough) even if the
data are not. Sometimes they are not, however, and so some means of testing for stationary
can be very important.

There is an extensive literature on testing for stationarity in time series (e.g., Elliot et al.,
1996). Ultimately, however, stationarity is a modeling assumption and, since there are
many ways in which a process can be non-stationary, there is no test that can cover all of
them. There has been less comparable development of tests of stationarity for spatial data
than for time series. There are two fundamental differences between time series data and
spatial data that make the notion of testing for stationarity of spatial data less meaning-
ful (Haining, 2003, p. 47). The first is that time is characterized by a flow (and hence a
dependency) in one direction. One can distinguish between past, present, and future: one
can specify that events in the present or past cannot depend on the future. There is no
equivalent concept with spatial data. Second, spatial data Y x y(,) exist (in this book) in two
dimensions, and there is no guarantee that the structure of spatial data be the same in one
dimension as it is in the other. If the dependency has the same structure independent of
direction, the data are said to be isotropic, otherwise the data are anisotropic. If you rub your
hand along a piece of corduroy fabric, the resistance depends on whether you rub with the
cords or perpendicular to them, so it is anisotropic. Plain fabric does not offer a different
resistance depending on direction; it is isotropic.

The properties of stationarity and isotropy in spatial data must always be presented
as assumptions, which can be examined in an exploratory way but cannot be subjected
to rigorous hypothesis testing. As stated succinctly by ver Hoef and Cressie (2001,
p. 299), “these assumptions are impossible to test, because it is impossible to go back
in time again and again and generate the experiment each time to check whether each
experimental unit has the same mean value or whether the correlation is the same for
all pairs of plots that are at some fixed distance from each other. However, any gross
spatial trends in the residuals…would cause suspicion that they are not stationary.”
A data set like the sand content data discussed in Section 3.2.1 obviously is not station-
ary, although the residuals of the detrended data (i.e., the sum ˆ(,) ˆ(,)η εx y x y+) might be

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

77Statistical Properties of Spatially Autocorrelated Data

expected to satisfy the assumption of stationarity. There are some statistical tools that
can be used to explore the stationarity of spatial data. One of these is the local Moran’s I,
discussed in Section 4.5.3, and another is geographically weighted regression, discussed
in Section 4.5.4.

3.3 Monte Carlo Simulation

In many cases, the properties of a statistical model cannot be worked out analytically.
Monte Carlo simulation is a very useful tool for estimating these properties numerically.
Monte Carlo simulation has a number of definitions (Ripley, 1981, Besag and Clifford,
1989, Manly, 1997), but a very general one is given by Rubinstein (1981, p. 11) as “a
 technique, using random or pseudorandom numbers, for solution of a model.” The sta-
tistical definition of an experiment is an action that can in principle be replicated an
arbitrary number of times (Larsen and Marx, 1986, p. 14). We have made a point of dis-
tinguishing between a replicated experiment and an observational study, so at the risk of
being pedantic we will put the word “experiment” in quotes when used in the statistical
context just given. In practice “experiments” are generally only carried out once or a few
times. The idea of a Monte Carlo simulation is to carry out a simulated “experiment”
many (e.g., 1000 or 10,000) times, to observe the properties of the resulting distribution of
outcomes, and to compute statistics characterizing this distribution. It is usually no prob-
lem for R to generate the pseudorandom numbers (see Section 2.3.2) needed to simulate
the “ experiment” many times.

The R function replicate() can be used to carry out Monte Carlo simulations.
Consider the “experiment” consisting of tossing a fair coin n = 20 times and record-
ing the number of heads. The probability of the coin turning up heads on any one toss
is p = 0 5. . According to standard statistical theory (Larsen and Marx, 1986, p. 96), the
number of heads in 20 tosses follows a binomial distribution with a mean np = 10 and a
variance np p()1 5− = . Let us implement and display the results of a Monte Carlo simula-
tion of this “experiment.” The actual “experiment” is placed in a function called coin.
toss() that generates the number of heads as a pseudorandom number from a binomial
distribution.

> coin.toss <- function (n.tosses, p){
+ n.heads <- rbinom(1,n.tosses, p)
+ }

The function takes two arguments, the number of tosses n.tosses and the probability
of heads p. Note the lack of a return statement. As mentioned in Section 2.5, when there
is no return statement, the last quantity computed, which in this case is n.heads, is
returned.

Now we are ready to carry out the Monte Carlo simulation.

> set.seed(123)
> n.tosses <- 20
> p <- 0.5
> n.reps <- 10000
> U <- replicate(n.reps, coin.toss(n.tosses, p))

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

78 Spatial Data Analysis in Ecology and Agriculture Using R

The function replicate() generates a vector U whose elements are the number of heads
in each of the 10,000 replications of the experiment.

> mean(U)
[1] 9.9814
> var(U)
[1] 4.905345
> hist(U, cex.lab = 1.5, # Fig. 3.5
+ main = "Number of Heads in 20 Tosses",
+ cex.main = 2, xlab = "Number of Heads")

The mean and variance of U are close to their theoretically predicted values of 10 and 5,
respectively, and a histogram of U indicates that it has the approximately normal distribu-
tion (Figure 3.5) that is expected based on central limit theorem (Larsen and Marx, 1986,
pp. 206, 322). This theorem says, roughly speaking, that, given a set of random variables
from any distribution, not necessarily normal, the sample mean of this set is approxi-
mately normally distributed, with the approximation becoming better as the sample size
increases.

In the simple example of the coin tossing “experiment” just carried out, the statistical
properties of the sampling distribution (i.e., its mean, variance, etc.) could be computed
analytically, but for many “experiments,” particularly those involving spatial statistics,
this is not the case. In such circumstances, Monte Carlo simulation may be the only pos-
sibility for obtaining insight into the properties of the data. Even in those cases where a
closed form solution is possible, a Monte Carlo simulation often provides insight and intu-
ition not so easily available from analytical calculations.

Number of Heads in 20 Tosses

Number of Heads

F
re

qu
en

cy

5 10 15

0
50

0
10

00
15

00

FIGURE 3.5
Histogram of the results of 10,000 Monte Carlo simulations of the tossing of a fair coin 20 times in succession
and counting the number of heads.

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

79Statistical Properties of Spatially Autocorrelated Data

3.4 A Review of Hypothesis and Significance Testing

Spatial autocorrelation often affects the outcome of significance tests. For this reason, we
will spend some time reviewing this procedure. The review is informal and intuitive; for
a more formal discussion see Muller and Fetterman (2002, p. 4) and Schabenberger and
Pierce (2001 p. 22). Suppose we have measured a set of values { , , ..., }Y Y Yn1 2 of a normally
distributed random variable Y whose mean µ and variance σ 2 are unknown. In this book,
both the random variable and its values are denoted with an upper case Latin letter. Other
texts frequently denote the values of the random variable with lowercase letters, but we
do not follow this practice because the symbols x and y are used to indicate spatial coordi-
nates. We can write the expression for the Yi as

 Y i ni i= + =µ ε , , ..., ,1 (3.5)

where the ε i are independent, identically distributed random variables drawn from a nor-
mal distribution with mean zero and variance σ 2. We wish to test the null hypothesis that
the value of the mean µ is zero against the alternative that it is not,

H

Ha

0 0

0

: ,

: .

µ

µ

=

≠
 (3.6)

When the population from which the values Yi are drawn is normal, this hypothesis can
be tested using the Student t statistic. This statistic is defined as follows. The sample mean
Y is given by

 Y
n

Yi

i

n

=
=

∑1

1

. (3.7)

If the Yi are independent, then the variance of Y is given by

 var{ }Y
n

= σ 2

 (3.8)

(Larsen and Marx, 1986, p. 321). Moreover, the sample variance, defined by

 s
n

Y Yi

i

n
2

1

21
1

=
−

−
=

∑() , (3.9)

is an unbiased estimator of σ 2. Therefore s n2 / is an unbiased estimator of the variance
of Y . The square root of this quantity is called the standard error and is given by

 s Y
s
n

{ } = . (3.10)

With these quantities defined, the Student t statistic is given by

 t
Y
s Y

= − µ
{ }

. (3.11)

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

80 Spatial Data Analysis in Ecology and Agriculture Using R

The distribution of this statistic under H0 0: µ = in (3.5) is called the Student t distribution.
One way to carry out the test is to compare the value of the t statistic computed in

Equation 3.11 with the percentiles of the Student t distribution. If H0 is true, then the value
of t should be small. According to the standard theory (Larsen and Marx, 1986, p. 343), if
we define tα/2 as the α/2 percentile of the Student t distribution, then P t t{| | } ,/> =α α2 i.e.,
the probability that the magnitude of the t statistic will exceed the α /2 percentile, is equal
to α . There are four possible outcomes of this test, which are shown in Table 3.1. Two of
these represent an error, that is, a failure to draw the correct conclusion from the test. In
particular, the test will with probability α result in a Type I error, that is, a rejection of the
null hypothesis when it is true (Table 3.1). It is important to emphasize that the most appro-
priate interpretation of a failure to reject the null hypothesis is not to conclude that the null
hypothesis is true and that µ = 0. We have not proven that µ = 0; we have simply not been
able to demonstrate with adequate certainty that it is not zero. The most appropriate way
to verbalize a failure to reject the null hypothesis that µ = 0 is to say that, based on our
available evidence, we cannot distinguish the value of µ from zero.

There are two approaches to the test of H0 (Schabenberger and Pierce, 2001, p. 22). The
first is to fix α at some pre-assigned value, say, 0.1 or 0.05, and determine based on the
value of the percentile of the t distribution relative to this fixed value whether or not to
reject H0. The second approach is to report the probability of observing a statistic at least as
large in magnitude as that actually observed (i.e., the p value) as the significance of the test.
Manly (1997, p. 1) advocates the latter policy, pointing out that “To avoid the characteriza-
tion of belonging to ‘that group of people whose aim in life is to be wrong 5% of the time’
(Kempthorne and Doerfler, 1969), it is better to regard the level of significance as a measure
of the strength of evidence against the null hypothesis rather than showing whether the
data are significant or not at a certain level.” Nevertheless, the magic number 0.05 is suf-
ficiently ingrained in applied statistics that it is impossible to completely avoid using it. In
addition, we will see that it provides a convenient means to measure the effect of spatial
autocorrelation on the results of the test.

If, for whatever reason, the null hypothesis H0 is not rejected, there is the possibility
that this decision is incorrect. Failure to reject the null hypothesis when it is false is called
a Type II error (Table 3.1). The power of the test is defined as the probability of correctly
rejecting H0 when it is false, that is, power Type II error= −1 Pr{ }.

As an illustration of the use of R in a test of a null hypothesis such as that in Equation 3.6,
we generate a sample of sample size n = 10 from a standard normal distribution.

> set.seed(123)
> Y <- rnorm(10)
> Y.ttest <- t.test(Y, alternative = "two.sided")
> Y.ttest$p.value
 [1] 0.8101338

TABLE 3.1

The Four Possible Outcomes of the Test
H0 0: µ = against the Alternative Ha : µ ≠ 0

H0 True H0 False

Don’t reject H0 OK Type II error
Reject H0 Type I error OK

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

81Statistical Properties of Spatially Autocorrelated Data

It happens that this time the p value is about 0.81. We can modify this to carry out a Monte
Carlo simulation of the test. The default value α of the function ttest() is 0.05, and indeed
the fraction of Type I errors is close to this value.

> set.seed(123)
> ttest <- function(){
+ Y <- rnorm(10)
+ t.ttest <- t.test(Y,alternative = "two.sided")
+ TypeI <- t.ttest$p.value < 0.05
+ }
> U <- replicate(10000, ttest())
> mean(U)
[1] 0.0485

There is an alternative method for carrying out hypothesis and significance tests that we
shall occasionally employ. This is called, depending on the author, either a permutation test
or a randomization test. We will use the former term, although by doing so we probably put
ourselves in the minority, in order to avoid confusion with the randomization assumption,
which is discussed in Chapter 4. Permutation tests are nonparametric, so that they do not
depend on the population fitting any parameterized distribution, in the way that the t test
depends on the normal distribution (see Exercise 3.1). They are simple both to understand
and to carry out. For a reason that will soon become apparent, we will not use a permutation
test to test the null hypothesis of Equation 3.6. Instead, we introduce this form of hypothesis
test using a two-sample test, in which we test the hypothesis that two independent samples
come from the same probability distribution (Manly, 1997, p. 97). We first draw two random
sequences Y Y ii1 1 1 5= ={ }, , ..., and Y Y ii2 2 1 5= ={ }, , ..., of five values each. Each sequence is
drawn from a standard normal distribution (since this test is nonparametric, the parameters
could be drawn from any distribution, but the normal is a convenient one). The difference d
between the means of the two sequences is small but not negligible.

> set.seed(123)
> print(Y1 <- rnorm(5))
[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774
> print(Y2 <- rnorm(5))
[1] 1.7150650 0.4609162 -1.2650612 -0.6868529 -0.4456620
> print(d <- mean(Y1) - mean(Y2))
[1] 0.2378892

We will test the hypothesis that the expected values of the parent distributions of the
two samples are the same. The basic idea is to repeatedly create new vectors ′Y1 and ′Y2 by
rearranging (i.e., permuting) the elements of Y1 and Y2 , and comparing the mean of the
differences ′ = ′ − ′d Y Y1 2 with that of d Y Y= −1 2. If Y1 and Y2 come from the same population
then, if we repeat this permutation many times, the difference d between the means of Y1
and Y2 should not have an extreme value in the distribution of means of permuted arrays.
If it does have an extreme value, then it is likely that Y1 and Y2 do not come from the same
population.

The first step of the procedure is to concatenate the two sequences into a single sequence
of 10 elements. Then we rearrange these in a random order value and finally we separate
the reordered array into two new sub-arrays of five elements each. These are the test arrays

′Y1 and ′Y2. We use the R function sample() to implement the permutation. Read about this

https://www.facebook.com/groups/stats.ebooksandpapers/
https://www.facebook.com/groups/stats.ebooksandpapers/

82 Spatial Data Analysis in Ecology and Agriculture Using R

function using ?sample. By default sample(x,...) returns an array of the same length
as x of randomly sampled values of the elements of x. One of the optional arguments
of sample() is replace, which indicates sampling with replacement if it has the value
TRUE. By default the value of replace is FALSE.

> Y <- c(Y1, Y2)
> Ysamp <- sample(Y,length(Y))
> print(Yprime1 <- Ysamp[1:5])
[1] -0.68685285 0.46091621 1.71506499 -0.44566197 0.07050839
> print(Yprime2 <- Ysamp[6:10])
[1] -1.2650612 1.5587083 -0.2301775 -0.5604756 0.1292877
> print(dprime <- mean(Yprime1) - mean(Yprime2))
[1] 0.2963386

The difference ′ = ′ − ′d Y Y1 2 in this case happens to be about the same magnitude as d. Now
we create a function perm.diff() that carries out the permutation and computation of ′d

> perm.diff <- function(Y1, Y2){
+ Y <- c(Y1, Y2)
+ Ysamp <- sample(Y,length(Y))
+ Yprime1 <- Ysamp[1:5]
+ Yprime2 <- Ysamp[6:10]
+ dprime <- mean(Yprime1) - mean(Yprime2)
+ }

We can now use the function replicate() to generate a set of differences between the
means of permutations of the elements of Y1 and Y2 . We start with nine permutations and
add the observed difference d as the tenth.

> set.seed(123)
> U <- replicate(9, perm.diff(Y1, Y2))
> sort(c(d,U))
 [1] -0.64644597 -0.61387764 -0.20122761 -0.08870639 -0.08856700
 [6] 0.15530214 0.23788923 0.29633862 0.86680338 1.14863761

The observed d occupies the seventh position among the differences in permutations.
To get a more precise evaluation, we can generate a p value by running a large number (say,
10,000) permutations and counting the number in the “tail,” that is, the number of values
that are farther away from the median than is d. Doubling this number (to account for both
tails) and dividing by 10,000 yields a p value.

> set.seed(123)
> U <- replicate(9999, perm.diff(Y1, Y2))
> U <- c(U, d) # Add original observation to get 10,000
> U.low <- U[U < d] # Obtain diff. values less than d
> {if (d < median(U)) # Is d in the upper or lower tail?
+ n.tail <- length(U.low)
+ else
+ n.tail <- 10000 - length(U.low)
+ }
> print(p <- 2 * n.tail / 10000) # Two tail test
[1] 0.714

83Statistical Properties of Spatially Autocorrelated Data

The elements of the vector U are the 9,999 differences between means of random permuta-
tions of the values in Y1 and Y2 ; the original value d is the ten thousandth. The statement
U.low <- U[U < d] is used to determine how many values of U are less than the differ-
ence between the original samples. If this value is either very small or very large, then d
is judged sufficiently extreme to justify rejection of the null hypothesis. In the example,
about 71% of the randomized rearrangements have differences farther away from the
middle value than the observed value of 0.238 (to three decimal places) so the p value
computed by the permutation test is p = 0 71. . This is not far from the value computed by
a t test.

> t.test(Y1, Y2, "two.sided")$p.value
[1] 0.7185004

Having carried out the two sample permutation test, we can see why a one sample
 permutation test would not work. Rearranging the order of a single sample does not
affect the sample mean, so there is nothing to test (Manly, 1997, p. 17). There are other
 nonparametric tests that can be used for a one sample test, the simplest of which is the sign
test (Crawley, 2007, p. 300), but we will not pursue these here.

There has been considerable discussion over the years about the scope of inference
of permutation tests and how it compares with the scope of inference of traditional
 parametric tests such as the t-test. Our summary of this discussion is based on com-
ments by Romesburg (1985) and Edgington (2007). One of the assumptions underlying
 parametric tests such as the Student t-test is that the data are a random sample of the
population, and in many cases this assumption is violated. Permutation tests, on the
other hand, do not require this randomness assumption. Fisher (1935) originally devel-
oped the permutation test as a means of demonstrating the robustness of the Student
t-test when used with non-normal data. Romesburg (1985, p. 22) asserts that because
of the close correspondence between the results of parametric tests and permutation
tests, a parametric test may be considered as an approximation of a permutation test.
In this context, the assumption of randomness can, according to Romesburg (1985), be
relaxed for the parametric test as well. On the other hand, Edgington (2007) and others
have pointed out that, strictly speaking, permutation tests apply only to the data sets
on which they are based, and cannot with statistical validity be extended to a wider
population. In other words, the results of an analysis using parametric statistics can be
extended to the entire population from which the sample is drawn, but require assump-
tions of random sampling that are almost never satisfied in practice. The results of a
permutation test, on the other hand, do not depend on assumptions of random sam-
pling but cannot be extended to the entire population from which the sample is drawn.
What does one do in the face of this dilemma? First, when both parametric and per-
mutation tests can be applied, the best approach is to use them both and compare the
results. When one does not have a theoretical justification for extending one’s scope of
inference, one must be as careful as possible to do everything practical to justify this
extension in scope, that is, to make sure that the data set is not selected from the popu-
lation in a way that makes it a biased sample either because the selection process was
biased or because the scope of inference is extended too far. It is useful to recall a quote
of G.E.P. Box (1976): “Since all models are wrong, the scientist must be alert to what is
importantly wrong. It is inappropriate to be concerned about mice when there are tigers
abroad.” It is, however, entirely appropriate to do everything possible to ensure that no
tigers are inadvertently released.

84 Spatial Data Analysis in Ecology and Agriculture Using R

3.5 Modeling Spatial Autocorrelation

3.5.1 Monte Carlo Simulation of Time Series

We begin the discussion of the simulation of spatial data with a simpler topic: the simula-
tion of time series data. We will use time series to illustrate the effects of positive autocor-
relation on the outcome of hypothesis tests. Much of the theory of spatial statistics grew
out of the analogy with time series (Whittle, 1954; Bartlett, 1935, p. 18) and because of the
one-dimensional and directional nature of time series data, many of the most important
concepts are more intuitive in that domain. Simulation through the use of artificially gen-
erated data sets has the advantage of permitting the analysis of data whose distributional
properties are known. We will use Monte Carlo simulation to explore the effect of tempo-
ral autocorrelation on the outcome of a test of the null hypothesis that an observed data set
is drawn from of a population with mean zero.

In Section 3.4, we presented the results of a simulation using uncorrelated data. The
simulated error rate, that is, the fraction of times a Type I error occurred, was 0.0485.

Now we will explore the effect of autocorrelation on the outcome of the t-test. The auto-
correlation takes the form of a first-order autoregressive time series in the error terms
(Kendall and Ord, 1990, p. 56). The model is initially written as

Y

i

i i

i i i

= +

= + =−

µ η

η λη ε1 1 2, , , ...
 (3.12)

where − < <1 1λ and the ε i are independent normally distributed random variables with
mean zero and variance σ 2. The ηi are the autoregressive error terms. The model is speci-
fied in this form to maintain consistency with the spatial model that will be discussed in
the next section.

The equations are easiest to work with if we substitute η µi iY= − and η µi iY− −= −1 1 into
the second of Equations 3.12 to get

 Y Y ii i i− = − + =−µ λ µ ε() , , , ...1 1 2 (3.13)

If λ = 0 then this reduces to Equation 3.5. The time series is initiated by specifying Y1 and
setting η0 0= and ε1 0= . We then have

Y Y

Y Y

Y

Y Y

2 1 2

3 2 3

2
1 2 2

4 3

= + − +

= + − +

= + − + +

= + −

µ λ µ ε

µ λ µ ε

µ λ µ λε ε

µ λ

()

()

()

(µµ ε

µ λ µ λ ε λε ε

)

() .

+

= + − + + +

4

3
1

2
2 3 4Y

 (3.14)

and so forth. Since − < <1 1λ , λ j → 0 as j increases, so that the influence of the initial term
declines with each time step.

85Statistical Properties of Spatially Autocorrelated Data

We will simulate this process with the value of µ set to zero so that the null hypothesis
is true. Since µ = 0, it follows that Equation 3.13 becomes

 Y Y ii i i= + =−λ ε1 1 2, , , ..., (3.15)

and this is how the simulation is programmed. The first simulation, with λ set at 0.4,
involves a sample of size 10. The initial value is set at Y1 0= , which is a fixed, non-random
number. This may cause the data to be non-stationary for the first few values of i. This
effect is sometimes called an “initial transient,” and to avoid it, twenty values of Yi are
generated and the first ten are discarded.

> lambda <- 0.4 #Autocorrelation term
> set.seed(123)
> Y <- numeric(20)
> for (i in 2:20) Y[i] <- lambda * Y[i - 1] + rnorm(1)
> Y <- Y[11:20]

There is an R function arima.sim() that accomplishes the same thing as this code
without using a for loop. The call to the function in this case would be Y <- arima.
sim(list(ar=lambda),n = 10, n.start = 10). The for loop is used explicitly to
emphasize the connection with Equation 3.15.

We can now carry out a t-test of the null hypothesis H0 0: µ = .

> Y.ttest <- t.test(Y,alternative = "two.sided")
> #Assign the value 1 to a Type I error
> TypeI <- as.numeric(Y.ttest$p.value < 0.05)
> Ybar <- mean(Y)
> Yse <- sqrt(var(Y) / 10)
> c(TypeI, Ybar, Yse)
[1] 0.0000000 0.2790157 0.3028951

We concatenate into a single vector an indicator variable for a Type I error (1 = Type I error,
0 = H0 not rejected), the sample mean Y and standard error s Y{ }.

Now we are ready to combine this into a Monte Carlo simulation.

> set.seed(123)
> lambda <- 0.4
> ttest <- function(lambda){
+ Y <- numeric(20)
+ for (i in 2:20) Y[i] <- lambda * Y[i - 1] + rnorm(1, sd = 1)
+ Y <- Y[11:20]
+ Y.ttest <- t.test(Y,alternative = "two.sided")
+ TypeI <- as.numeric(Y.ttest$p.value < 0.05)
+ Ybar <- mean(Y)
+ Yse <- sqrt(var(Y) / 10)
+ return(c(TypeI, Ybar, Yse))
+ }

86 Spatial Data Analysis in Ecology and Agriculture Using R

We use the function replicate()to carry out the simulation as described in Section 2.6.

> U <- replicate(10000, ttest(lambda))
> mean(U[1,]) # Type I error rate
[1] 0.1936
> mean(U[2,]) # Mean value of Ybar
[1] 0.003212074
> mean(U[3,]) # Mean est. standard error
[1] 0.3128384
> sd(U[2,]) # Sample std. dev. of Ybar
[1] 0.5028021

The return value of the function ttest() is c(TypeI, Ybar, Yse). This is interpreted by
R as a column vector, and thus the output of replicate() is a 3 10 000× , matrix (i.e., each
column of the matrix is one replication).

The fraction of Type I errors in the 10,000 simulation runs is 0.194, well above the nomi-
nal error rate of 0.05. The effect of the positive autocorrelation has been to make the t-test
dramatically more “liberal” (sometimes called “anti-conservative”), that is, to reject the
null hypothesis more often than the theory predicts. Figure 3.6a shows a plot of the Type I
error rate of the hypothesis test of Equation 3.6 applied to the model of Equation 3.15 as a
function of λ. The error rate increases dramatically with increasing λ.

Why does this happen? The outcome of the test is based on the value of the t statis-
tic in Equation 3.11. From this equation, we can see that since the null hypothesis speci-
fies µ = 0 there are two possible explanations for an increased Type I error rate: either
the magnitude of the numerator Y is overestimated (i.e., the estimator Y is biased), or
the denominator s Y{ }, the standard error, underestimates the true standard deviation of
Y (or both). Based on Figure 3.6b, the numerator Y appears to be estimated as approxi-
mately zero. However, comparing Figure 3.6c and 3.6d indicates that although the value
of s Y{ } as computed in Equation 3.10 stays approximately constant and near its theoreti-
cal value of 1 10 0 316/ .= , the actual standard deviation of Y increases dramatically as λ
increases from zero.

It is not hard to show that the estimate Y of the population mean is unbiased whether or
not the errors are autocorrelated. Indeed, from Equation 3.7, since ε i has mean 0 and vari-
ance σ 2, we have

E Y E
Y
n

E
n

Yi

i

n

i i

i

n

{ } ()=

= + − +

=

−

=
∑ ∑

1

1

1

1 µ λ µ ε

= + −

+

= +

−

= =
∑ ∑n

n
E Y

n
E

E Y

i

i

n

i

i

nµ λ µ ε

µ λ

() { }

{

1

1 1

1

ii

i

n

−

=

− +

= + × +

=

∑ 1

1

0

0 0

µ

µ λ

µ

}

 (3.16)

The variance of the mean, on the other hand, is (Haining, 1988)

87Statistical Properties of Spatially Autocorrelated Data

0.0 0.2 0.4 0.6 0.8

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

E
rr

or
 R

at
e

Error Rate

λ λ

λ λ

0.0 0.2 0.4 0.6 0.8
-0

.1
0

-0
.0

5
0.

00
0.

05
0.

10

M
ea

n
Y

Mean of Sample Means

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

M
ea

n
s{
Y

}

Mean Estimated Standard Error

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

S
td

. D
ev

. o
f Y

Standard Deviation of Mean

(a) (b)

(c) (d)

FIGURE 3.6
Results of Monte Carlo simulations of an autoregressive time series model with parameter λ for 0 0 8≤ ≤λ . .
Plotted against values of λ are: (a) Type I error rate (fraction of times a Type I error is made) for of a test of the null
hypothesis H0 0: µ = against the alternative Ha : µ ≠ 0; (b) mean value of Y over the 10,000 simulations; (c) mean
value of s Y{ } over the 10,000 simulations; (d) standard deviation of Y over the 10,000 simulations.

88 Spatial Data Analysis in Ecology and Agriculture Using R

var{ } var

var{ } cov{ , }

Y
n

Y

n
Y

n
Y Y

n

i
i

i i i

ii

=

= +

= +

∑

∑∑ −

1

1 2
2 2 1

2σ 22
2 1

n
Y Yi i

i

cov{ , }.−∑

 (3.17)

Therefore, if cov{ , }Y Yi i− >1 0 then var{ } /Y n> σ 2 and therefore the quantity σ 2/n in Equation
3.8 underestimates var{ }Y . Moreover, the expected value of s2 defined in Equation 3.9 is

 E s
n n

Y Yi i

i

{ }
()

cov{ , }.2 2
1

2
1

= −
−

−∑σ (3.18)

(Haining, 1988). Therefore, if cov{ , }Y Yi i− >1 0 then the quantity s Y{ } of Equation 3.10 under-
estimates the standard deviation of Y through a combination of two effects on this stan-
dard deviation: first, because s Y{ } in Equation 3.10 underestimates the square root of σ 2/ ,n
and second, because σ 2/ ,n in Equation 3.8 underestimates var{ }Y (Haining, 1988).

This effect of temporal autocorrelation, that the quantity s Y s n{ } /= underestimates the
true standard deviation of Y , means that the denominator of the t statistic in Equation 3.11
is smaller than it should be to properly take into account the variability of Y , and there-
fore the t statistic is larger than it would be if the random variables Yi were uncorrelated.
The effect of inflating the value of the t statistic is to increase the Type I error rate, the
fraction of times that the test exceeds the threshold for rejection of the null hypothesis.
If, for example, the size of α is fixed at α = 0 05. then the actual fraction of tests carried
out in which the null hypothesis is rejected will actually be higher than 0.05, as dem-
onstrated above.

Another way of interpreting this effect is that when data are autocorrelated, each data
value provides some information about the other data values near it. When the data are
independent, each of the n data values carries only information about itself and, in sta-
tistical terms, brings a full degree of freedom to the statistic (Steel et al., 1997, p. 24). Each
autocorrelated data value, however, brings less than a full degree of freedom, and thus the
effective sample size, which is in the denominator of Equation 3.10, is not n but rather a
value less than that.

3.5.2 Modeling Spatial Contiguity

The results of the previous section indicate that the positive autocorrelation among the
random variables Yi in the time series of Equation 3.13 has the effect of increasing the vari-
ance var{ }Y . It is reasonable to expect that the same effect may prevail when the random
variables are spatially autocorrelated.

The simplest spatial analog for Equation 3.12 is a spatially autocorrelated random vari-
able on a square m m× lattice. By direct analogy with Equation 3.12 one can write

89Statistical Properties of Spatially Autocorrelated Data

Y

w i n

i i

i ij j

j

n

i

= +

=

+ =
=

∑

µ η

η λ η ε
1

1 2, , , ..., .
 (3.19)

Here n m= 2, wij measures connection strength between Yi and Yj, ε σi N~ (,)0 2 , and as
before λ measures the overall autocorrelation strength.

By analogy with time series models, in which one speaks of a time lag, the term Σwij jη
is referred to as a spatial lag (Anselin and Bera, 1998). As an example, consider the case
m = 3. The lattice for this case is shown in Figure 3.7. The matrix W wij= [] in Equation 3.19
is called the spatial weights matrix. One simple W matrix can be constructed by letting

 w
if the cells share a boundary of length

otherwise
ij =

>

1 0

0
 (3.20)

The matrix W as defined in Equation 3.20 describing the lattice of Figure 3.7 is

 W =

0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 00 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0

, (3.21)

as can be verified by inspection. Note that the diagonal elements wii are all zero. That is, a
cell does not share a spatial connection with itself. This is the usual convention in defining
the spatial weights matrix.

The spatial weights matrix W determines how the spatial relationships between spatial
objects (polygons or points) are modeled. It is evident that the assignment of values to the

1 2 3

4 5 6

7 8 9

FIGURE 3.7
Numbering of a square 3 3× lattice.

90 Spatial Data Analysis in Ecology and Agriculture Using R

components wij of W plays an important role in the modeling of the spatial structure of the
data and therefore in the statistical analysis of this structure. There are two aspects of this
assignment of values to consider: determining which if any of the wij are assigned a value
of zero, indicating no spatial connection; and determining what number to assign to the
nonzero values of wij.

There is a considerable body of literature on this issue, with many proposed meth-
ods for assigning values. In discussing these methods, it is most convenient to separate
them initially into two categories. The first category consists of methods for describing
relationships among cells such as those of Figure 1.3b, whose boundaries are explicitly
defined, and the second consists of collections of methods for describing relationships
among spatial points such as those of Figure 1.3a, for which the cell boundaries are not
explicitly specified. We discuss four methods of determining the wij for data falling into
the first category, the explicitly defined mosaic of cells. These methods are the rook’s case,
queen’s case, distance, and a method proposed by Cliff and Ord (1981). We will then dis-
cuss two methods for determining the wij for the second category of spatial data, the set of
points with no explicitly defined boundaries. These are Euclidean distance and distance
threshold.

Beginning with the case of explicitly defined boundaries, the first and simplest choice
for W is to assign a positive value to contiguous cells and a value of zero to non-contiguous
cells. This requires a definition of contiguity. Probably the most common definition is that
cells are contiguous only if they are actually in contact with each other (this is called first
order contiguity). The rook’s case contiguity rule specifies that the elements of W are nonzero
only for those wij representing cells whose adjoining boundaries have length greater than
zero. In the queen’s case, those elements of W representing cells whose corners are touching
are also assigned nonzero values. The connection to the allowable moves of chess pieces
is apparent (to chess players). For the benefit of non-chess players, the rook can only move
laterally or forward and back, so that a rook located in lattice cell 5 of Figure 3.7 could
only move in the directions of cells 2, 4, 6, and 8. A queen can also move diagonally, so the
queen could also move in the direction of cells 1, 3, 7, and 9. In general, we will use the term
rook’s case to refer to any system of assigning values to W in which only boundaries with
length greater than zero have nonzero weight, and we will use the queen’s case to refer to
any system of assigning weights in which all boundaries between adjacent cells, whether
of zero or greater length, have nonzero values.

When values are assigned according to either rook’s case or queen’s case contiguity,
the simplest rule for assigning a numerical value is to let wij = 1 for contiguous cells and
wij = 0 for noncontiguous cells. This is called the binary weights assignment. While this
has the virtue of simplicity and does simplify certain computational formulas, there is an
alternative assignment rule that is also commonly used. This is to assign positive values to
contiguous cells in such a way that the row sum Σ j ijw always equals 1. This coding of this
weights matrix, called row normalized, may be represented as

w
if the cells share a boundary of length

otherwise

w

ij

ij

> >

=

0 0

0

jj

n

=
∑ =

0

1.

 (3.22)

91Statistical Properties of Spatially Autocorrelated Data

With this coding, the W matrix of Figure 3.7 has the form

 W =

0 1 2 0 1 2 0 0 0 0 0
1 3 0 1 3 0 1 3 0 0 0 0

0 1 2 0 0 0 1 2 0 0 0
1 3 0 0 0 1 3 0 1 3 0 0

/ /
/ / /

/ /
/ / /
00 1 4 0 1 4 0 1 4 0 1 4 0
0 0 1 3 0 1 3 0 0 0 1 3
0 0 0 1 2 0 0 0 1 2 0
0 0 0 0 1 3 0 1 3 0

/ / / /
/ / /

/ /
/ / 11 3

0 0 0 0 0 1 2 0 1 2 0
/

/ /

, (3.23)

so that all rows sum to 1. Although this rule does not have a strong intuitive justification,
it turns out to have some important advantages (Anselin and Bera, 1998, p. 243). A disad-
vantage, both conceptually and computationally, is that under this rule W is generally not
symmetric, that is, for many combinations of i and j w wij ji≠ . However, every row normal-
ized matrix is similar to a symmetric matrix (Ord, 1975), that is, they have the same eigen-
values (Appendix A.1). It is often the case that this property is all that is required to carry
out computations associated with spatial analysis. Because of its statistical properties, and
because certain operations are greatly simplified by it, we will frequently use this rule in
our analyses. There are other rules for assignment besides binary and row normalized;
references for these are given in Section 3.7.

In this book, we will only develop models for spatial contiguity using either the rook’s
case or queen’s case rules. However, for purposes of exposition we describe two other
rules. These address a problem with the rook’s case and queen’s case rules, which is
that they are based strictly on topological properties, with no reference to geometry.
Topological properties are those properties that are invariant under continuous transfor-
mation of the map. That is, they are properties that do not change when the map is rotated
and distorted as if it were made of rubber. The fact that two polygons share a bound-
ary is a topological property. Geometric properties do vary with continuous distortion;
the property that one polygon is north of another, or larger than another, is a geometric
property.

Cliff and Ord (1981, p. 15), citing Dacey (1965), refer to the problem with the rook’s case
and queen’s case rules as the problem of “topological invariance.” That is, the strength of
connection is determined only by the topology of the map, and not by either its geometry
or by other factors that might influence the strength of connection between polygons.
The potential influence of geometry is shown in Figure 3.8. Under rook’s case, contigu-
ity the lattice in Figure 3.8a has the same spatial weights matrix as that in Figure 3.8b.
The two figures are not topologically equivalent, but they could be made so by poking
a very small hole in the center of the lattice of Figure 3.8a. In this case, the two figures
would have the same spatial weights matrix under queen’s case contiguity as well. More
generally, factors that might influence the degree of contiguity between two polygons
include barriers. For example, two polygons that are depicted as contiguous on a map
might actually be separated by a river or highway that renders direct transit between
them difficult.

92 Spatial Data Analysis in Ecology and Agriculture Using R

One fairly simple way to define contiguity geometrically is to let w dij ij= , where dij is
some measure of the distance between cell i and cell j. A common choice is to let dij be the
Euclidean distance between centroids of the cells. While this rule does have a certain intu-
itive appeal, it is not necessarily the best choice. Chou et al. (1990) compared the results
of statistical tests in which weights matrices based on this distance rule were used with
tests using weights matrices based on some topological form of contiguity rule such as
rook’s or queen’s case. They found that the tests based on the contiguity rules were much
more powerful. The tests were carried out on data from an irregular mosaic with greatly
varying cell sizes, and the authors’ intuitive explanation for the difference in power is
that larger cells, which tend to have reduced wij values due to the greater distance of
their centroids from those of other cells, in reality tend to exert the greatest influence on
the values of neighboring cells. Manly (1997) points this out as well, and suggests using
the inverse of the distance dij

−1 instead. Cliff and Ord (1981) suggest the use of the rule
w b dij ij ij= β α/ , where bij is the fraction of the common border between cell i and cell j that
is located in the perimeter of cell i, and α and 𝛽 are parameters that are chosen to fit the
data. This rule would better distinguish between the structures in Figure 3.8a and b. As
we have said, however, in this book we will employ only the rook’s case or queen’s case
rules for polygonal data.

We turn now to the specification of weights for the second type of spatial data, in which
the location data consist of a finite number of points in the plane as in Figure 1.3a. Since
there are no explicit boundaries, a specification by topology, such as the rook’s case or
queen’s case, is impossible. The only means available for specification of weights is geo-
metric. One possibility is to use some form of distance metric such as the inverse distance
discussed in the previous paragraph. A second method, which is the one we will use,
is to establish a geometric condition that, if satisfied, defines two locations i and j to be
neighbors, in which case the value of wij is greater than zero. The nonzero values of wij in
this formalism are determined similarly to those of the topologically defined neighbor-
ing lattice cells already discussed, for example, using a definition analogous to Equation
3.20 or 3.22. In this context, one can either make the condition for a nonzero wij depend on
distance between points being less than some threshold value, or one can declare the k
closest points to point i to be neighbors of this point. When the locations of the data form
a rectangular set of points such as that defined by the centers of the cells in Figure 1.3b,
the threshold distance metric, for an appropriately chosen threshold, generates a weights
matrix identical to that of the rook’s case (Equation 3.20, see Exercise 3.3). The k nearest
neighbors approach does not, because points near the boundary are assigned more neigh-
bors than would be the case under a corresponding lattice or mosaic topology.

1 2

3 4

(a) (b)

FIGURE 3.8
Under the rook’s case contiguity rule, maps (a) and (b) have the same spatial weights matrix. (Modified from
Cliff and Ord, 1991, Figure 1.6, p. 15. Used by permission of Pion Limited, London, UK.)

93Statistical Properties of Spatially Autocorrelated Data

3.5.3 Modeling Spatial Association in R

Spatial association is modeled in R by means of the spatial weights matrix W discussed in
Section 3.5.2. The representation of this matrix is broken into two parts, matching the two
part process of defining the matrix described in that subsection. The first part identifies the
matrix elements that are greater than zero (signifying spatial adjacency), and the second
assigns a numerical value to adjacent elements. Because spatial weights matrices tend to
be very large and sparse (i.e., the vast majority of their terms are zero, as can be seen
in Equations 3.21 and 3.23), W is not stored explicitly as a matrix in the spdep package.
Instead, it is represented by a neighbor list, also called an nb object, which can be converted
into a spatial weights matrix. A neighbor list describing a rectangular lattice like the one
in Figure 3.7 can be generated using the spdep function cell2nb(). The sequence of
 commands is as follows.

> library(spdep)
> nb3x3 <- cell2nb(3,3) #Rook’s case by default
Examine the structure of the neighbor list
> str(nb3x3)
List of 9
$: int [1:2] 2 4
$: int [1:3] 1 3 5
$: int [1:2] 2 6
$: int [1:3] 1 5 7
$: int [1:4] 2 4 6 8
$: int [1:3] 3 5 9
$: int [1:2] 4 8
$: int [1:3] 5 7 9
$: int [1:2] 6 8
- attr(*, “class”)= chr “nb”
- attr(*, “call”)= language cell2nb(nrow = 3, ncol = 3)
- attr(*, “region.id”)= chr [1:9] “1:1” “2:1” “3:1” “1:2” ...
- attr(*, “cell”)= logi TRUE
- attr(*, “rook”)= logi TRUE
- attr(*, “sym”)= logi TRUE

The order of cell indices is left to right and top to bottom as in Figure 3.7, so neighbors of
cell 1 are cells 2 and 4, and so forth. The argument type of the function cell2nb() can
be used to specify rook’s case or queen’s case contiguity. Since neither is specified in the
listing, the default, which is rook’s case, is used. The neighbor list does not specify the
numerical values of the nonzero spatial weights.

Assignment of weights is accomplished by the function nb2listw(), which creates a
listw object by supplementing the neighbor list object with spatial weight values. The
function nb2listw() has an argument style, whose value can take on a number of char-
acter values, including "B" for binary, "W" for row normalized, and several others not
described in this book. The default value is "W", which is invoked in the example here since
no value is given. Only a few lines of the response to the call to function str() are shown,
but these indicate that the elements of W33 match those in Equation 3.23.

> W33 <- nb2listw(nb3x3)
> str(W33)
List of 3
$ style : chr “W”

94 Spatial Data Analysis in Ecology and Agriculture Using R

$ neighbours:List of 9
 ..$: int [1:2] 2 4
 * * * DELETED * * *
$ weights:List of 9
 ..$: num [1:2] 0.5 0.5
 ..$: num [1:3] 0.333 0.333 0.333
 * * * DELETED * * *
- attr(*, “call”)= language nb2listw(neighbours = nb3x3)

Let us now use the raster and sp objects to simulate the spatial autocorrelation in
Equation 3.19. Recall that in the case of the temporal model of Equation 3.12, the autocor-
relation coefficient λ was required to satisfy − < <1 1λ to keep the terms Yi from blowing up.
The analogous restriction in the case of Equation 3.19 depends on the form of the spatial
weights matrix W. For the binary form of Equation 3.20, the restriction is −¼ < <λ ¼. To
see why, note that if λ > ¼ in Equation 3.19, then the sum of terms on the right-hand side
of Equation 3.19 will tend to be larger than the left-hand side, which will cause the Yi to
increase geometrically in magnitude. For the row standardized coding of Equation 3.22,
the corresponding restriction is −1 < λ < 1.

The spatial model (Equation 3.19) is easier to deal with if the equations are written in
matrix notation (Appendix A.1). Let Y be the vector of the Yi (i.e., Y Y Y Yn= ′

1 2 where
the prime denotes transpose), and similarly let µ be a vector, each of whose components
is the scalar µ, let η be the vector of the ηi (i.e., η η η η= []′1 2 n), and similarly let ε be the
vector of the ε i . The second of equations (Equation 3.19) can be written

η µ λ η ε

η µ λ η ε

1 1

1

1

2 2

1

2

= +

+

= +

+

=

=

∑

∑

w

w

j j

j

n

j j

j

n

. . . .

ηη µ λ η εn nj j

j

n

nw= +

+
=

∑
1

.

 (3.24)

Thus equations (Equation 3.19) may be written in matrix form as

Y

W

= +

= +

µ η

η λ η ε .
 (3.25)

The term Wη is the spatial lag in this case (Anselin, 1988, p. 22). However, because the lag
is applied to the error in Equation 3.25, this particular model is called the spatial error model
(see Chapter 13).

Haining (1990, p. 116) describes the following method of simulating this model.
Subtracting λ ηW from both sides of the second of equations (Equation 3.25) yields
η λ η ε− =W , or ()I W− =λ η ε . This equation may be inverted to obtain

 η λ ε= − −()I W 1 . (3.26)

95Statistical Properties of Spatially Autocorrelated Data

We can generate a vector Y Y Y Yn= { , , ..., }1 2 of autocorrelated random variables by generating
a vector of ε ε ε ε= { , , ..., }1 2 n of normally distributed pseudorandom numbers, premultiply-
ing µ by the matrix ()I W− −λ 1 to obtain η, and adding µ in Equation 3.25 to obtain Y. The R
package spdep implements this solution method. We will demonstrate it using a square
grid generated by the function cell2nb(). Because cells on the boundary of the lattice
only have a neighbor on one side, they have asymmetric interactions. This can cause a
non-stationarity analogous to the initial transient in the time series model of Equation 3.12,
discussed in Section 3.5.1. In that example, the first ten values of Yi were discarded to
eliminate or at least reduce initial transient effects. In a similar way, we will reduce the
boundary effect by generating a larger region than we intend to analyze and deleting the
values Yi of lattice cells near the boundary. We will generate code to implement equation
(Equation 3.25) with µ = 0 (so that the null hypothesis is true) for a square grid of 400 cells
plus two cells on the boundary that will be dropped. Since µ = 0, we have Y = η , and there-
fore equations (Equation 3.25) become Y WY= +λ ε .

In code below the side of the region actual region computed is set at 24 and then two cells
are removed from each boundary to create the final display. The grid cells are placed at the
center of cells running from 0 to 24.The function expand.grid() (see Exercise 3.4) is used
to generate a data frame Y.df of coordinates of the centers of the lattice cells.

> library(spdep)
> Y.df <- expand.grid(x = seq(0.5,23.5),
+ y = seq(23.5, 0.5, by = -1))

Notice the second argument to the function expand.grid(), which is y = seq(23.5,
0.5, by = -1). This sequences y down from 23.5 to 0.5 and ensures that the generated
values of y are matched with the correct grid cell. The next step is to create a data field Y
in Y.df with the implementation of Equation 3.26. First we assign a value to λ and create
the square grid. This is again done using cell2nb(). Given the neighbor list created in
this way, the function invIrM() generates the matrix ()I W− −λ 1.

> lambda <- 0.4
> nlist <- cell2nb(24, 24)
> IrWinv <- invIrM(nlist, lambda)

Since no value of type is specified in the arguments cell2nb(), the default rook’s case
neighbor list is generated. Similarly, since no style argument is specified in the argu-
ments of invIrM(), the default, which is row normalized spatial weights, is used. The R
operator for matrix multiplication (Appendix A.1) is %*%, so that the generation of the vec-
tor λ and multiplication by ()I W− −λ 1 is carried out as follows.

> eps <- rnorm(24^2)
> Y.df$Y <- IrWinv %*% eps

The final step is to remove the boundary cells from the lattice.

> Y.df <- Y.df[(Y.df$x > 2 & Y.df$x < 22
+ & Y.df$y > 2 & Y.df$y < 22),]

Figure 3.9 contains thematic maps of the values of the spatial lattices created using a
grid of raster cells whose attribute values are the data generated above using expand.
grid(). The figures show the spatial patterns if Y for three values of the autocorrelation
parameter λ . The pattern for λ = 0 8. appears to have more of a tendency for high values to

96 Spatial Data Analysis in Ecology and Agriculture Using R

be near other high values and low values to be near low values than does the pattern for
λ = 0. As these figures show, however, it is not always easy to identify the level of spatial
autocorrelation by eye.

The construction of the grids in Figure 3.9 provides an opportunity to discuss some aspects
of the use of spatial objects from the raster and sp classes and of the process of coercion.
If you are not too familiar with these classes, it would be a good idea to review them in
Section 2.4.3. The three sets of values of Y.df computed above are defined on a square 20 by
20 grid. We can create such a grid using the creation function raster(). This was used in
Section 2.4.3 to read a file from the disk, but it can also be used to create a grid directly.

> library(raster)
> Y.ras <- raster(ncol = 20, nrow = 20, xmn = 0, xmx = 20, ymn = 0,
+ ymx = 20,crs = NULL)

This creates a 20 by 20 rasterLayer grid. By default the grid has WGS84 coordinates, and
the argument crs = NULL suppresses this. The next step is to use the coercion function
as() to coerce this into a SpatialPolygons object.

> Y.sp <- as(Y.ras, "SpatialPolygons")

A SpatialPolygons object is, in GIS terminology, an object that has spatial data but no
attribute data (Section 2.4.3). The attribute data is contained in the data frame Y.df cre-
ated above. We use the constructor function SpatialPolygonsDataFrame(Sp, data,
match.ID) to create the SpatialPolygonsDataFrame object Y.spdf.

> Y.spdf <- SpatialPolygonsDataFrame(Y.sp, Y.df, FALSE)

The first argument specifies the SpatialPolygons object, the second argument specifies
the data frame, and the third argument specifies whether the attribute data records are to
be matched with the polygons by matching their row names. In our case, these row names
are different, and so it is vitally important to verify that the order of the data records in
Y.df is the same as the order of the polygons in Y.sp (Exercise 3.4). This is sufficiently
important that we will devote a subsection to it in Section 3.6 when we work with real data,
and as preparation for this you should do the exercise.

Three values of λ

5

10

15

5 10 15 20

0

5 10 15 20

0.4

5 10 15 20

0.8

-4

-3

-2

-1

0

1

2

3

4

FIGURE 3.9

Gray-scale maps of values of Y in a spatial autoregression model for three values of λ.

97Statistical Properties of Spatially Autocorrelated Data

In order to examine the effect of spatial autocorrelation on the test of the null hypothesis
µ = 0 we will use functions from the spdep package to carry out a Monte Carlo simulation
experiment. Formally, the null and alternative hypotheses are the same as Equation 3.6,

H

Ha

0 0

0

: ,

: ,

µ

µ

=

≠
 (3.27)

where µ is a parameter in Equation 3.25. In the simulations, the value of µ is set to zero
so that the null hypothesis is true. The results of Monte Carlo experiments in Section
3.4.1 indicated that an increase in the value of the autocorrelation term λ in a time series
led to an increase in the Type I error rate. We will see whether the same phenomenon is
observed in the case of spatially autocorrelated data by carrying out a series of Monte
Carlo simulations of hypothesis tests of models of the form (Equation 3.25) with increasing
values of λ. The code for these tests does not require that the locations of the lattice cells be
specified explicitly; these locations are implicit in the spatial weights matrix W describing
them. The coding is therefore slightly different from that just given. We use cell2nb() to
generate a neighbor list of a 14 by 14 grid of cells, generate the random numbers and then
remove the outer two cells to remove edge effects. Then the function invIrM() is applied
to the neighbor list, again with the default values. We again use the defaults to create a row
normalized rook’s case spatial weights matrix.

> lambda <- 0.4
> nlist <- cell2nb(14,14)
> IrWinv <- invIrM(nlist, lambda)

Since we will use the function replicate() to run the simulations, we must create a func-
tion that we call ttest() to generate each individual simulation.

> ttest <- function(IrWinv){
+ # Generate a vector representing the autocorrelated data
+ # on a 14 by 14 grid
+ Y.plus <- IrWinv %*% rnorm(14^2)
+ # Convert Y to a matrix and remove the outer two cells
+ Y <- matrix(Y.plus, nrow = 14,
+ byrow = TRUE)[3:12,3:12]
+ Ybar <- mean(Y)
+ # Carry out the test and return the outcome and the mean
+ t.ttest <- t.test(Y,alternative = "two.sided")
+ TypeI <- t.ttest$p.value < 0.05
+ return(c(TypeI, Ybar))
+ }

Here are the results of the simulation.

> set.seed(123)
> U <- replicate(10000, ttest(IrWinv))
> mean(U[1,])
[1] 0.1876
> mean(U[2,])
[1] -0.0009136907
> sqrt(var(U[2,]))
[1] 0.1594549

98 Spatial Data Analysis in Ecology and Agriculture Using R

In the listing, the autocorrelation term lambda is set to 0.4, and the error rate is inflated.
Figure 3.10 shows the Type I error rate as a function of the value of λ used in the simulation.

At the value λ = 0, the error rate is approximately 0.05. As in the case of time series, the error
rate increases with increasing λ. The spatial analog of Equation 3.17, describing the effects
of autocorrelation on the variance of Y , is

var{ } var

var{ } cov{ , }

Y
n

Y

n
Y

n
Y Y

n

i
i

i i j

i ji

=

= +

= +

∑

∑∑
≠

1

1 2
2 2

2σ 22
2n

Y Yi j

i j

cov{ , }.
≠

∑

 (3.28)

and a similar analog exists for Equation 3.18, describing the effect of autocorrelation on
E{ }σ 2 . As with temporally autocorrelated data, so with spatially autocorrelated data the t
statistic is larger than it would be if the random variables Yi were uncorrelated, so that the
Type I error rate is inflated. To repeat, when data are spatially autocorrelated, each data
value provides some information about the other data values near it, so that the effective
sample size less than the number n of data records.

3.6 Application to Field Data

3.6.1 Setting Up the Data

Our primary descriptor of spatial relationships is the spatial weights matrix. The ele-
ments of this matrix depend on the rules used to define what it means to be a spatial
neighbor. The choices for neighbor status on which we focus are the rook’s case and
queen’s case for polygons (Figure 1.3b); and threshold distance and k nearest neighbors
for points (Figure 1.3a). In this section we examine, using a real data set, the sensitivity

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

Error Rate of t Test for Spatial Data

E
rr

or
 R

at
e

λ

FIGURE 3.10

Type I error rate as a function of λ in 10,000 Monte Carlo simulations of a spatial autoregression model.

99Statistical Properties of Spatially Autocorrelated Data

of the results of spatial analyses to the way this matrix is constructed. The data we will
use are detrended percent sand content in Field 1 of Data Set 4 (abbreviated Field 4.1).
The data, detrended using linear regression and median polish, are shown in Figure 3.4.
These figures indicate that the detrended sand content data may be spatially autocorre-
lated in this field. Both methods tend to leave low detrended values near the center and
higher values in the northern and southern ends.

We will fit the spatial error model of Equation 3.25 to the sand data that have been
detrended using the linear model (Figure 3.4b). There are other models besides the spatial
error model that may fit these data better, and no attempt is made at this point to justify
the use of the model; this issue is taken up in Chapter 13. For the present, we simply use
this as an example of one type of model that might be used for spatially autocorrelated
data. We first test methods for modeling spatial relationships between point data such as
those displayed in Figure 3.4b. The first method that we will use to generate the nonzero
values of a spatial weights matrix is based on a threshold distance between neighbor-
ing points, and the second is based on selecting the k nearest neighbors of each point.
We begin with the former. We identify the locations using the UTM coordinates, which
are in the data fields Northing and Easting. Because these are large numbers that, when
squared, disrupt the accuracy of the linear regression, we first create new coordinates by
subtracting the minimum values. The input of the data frame data.Set4.1 is described
in Appendix B.4.

> data.Set4.1$x <-data.Set4.1$Easting - min(data.Set4.1$Easting)
> data.Set4.1$y <-data.Set4.1$Northing - min(data.Set4.1$Northing)

Next, we fit the trend surface and use the function predict() described in Section 3.2.1 to
create this surface. The trend is subtracted from the Sand data field to create the detrended
sand content SandDT.

> trend.lm <- lm(Sand ~ x + y + I(x^2) +
+ I(y^2) + I(x*y), data = data.Set4.1)
> data.Set4.1$SandDT <- data.Set4.1$Sand - predict(trend.lm)

Next, the data frame is converted into a spatial points data frame using the function
coordinates(). The function dnearneigh() from the spdep package is used to create
a neighbors list in which points within 61 m (the point to point distance of the sample loca-
tions in the field) are considered neighbors.

> coordinates(data.Set4.1) <- c("x", "y")
> nlist <- dnearneigh(data.Set4.1, d1 = 0, d2 = 61)

The neighbor list is used to construct a listw object representing the spatial weights
matrix, and then the function errorsarlm() is applied to generate the estimated value of
λ in Equation 3.25.

> W <- nb2listw(nlist, style = "W")
> Y.mod <- errorsarlm(SandDT ~ 1, data = data.Set4.1, listw = W)
> print(Y.mod$lambda, digits = 4)
 lambda
0.4005

The estimate is ˆ .λ = 0 0054 . When this operation is repeated using the argument style = "B"
in the first line, the estimate is ˆ .λ = 0 1180. Recall that the limiting values of λ for stationarity

100 Spatial Data Analysis in Ecology and Agriculture Using R

are − < <1 1λ for the binary W and − < <1 4 1 4/ /λ for the binary W, so we expect the esti-
mated value λ̂ for the binary W to be about one-fourth that of the row normalized W.

Next, we try an implementation of the k nearest neighbors rule using the function
knearneigh(). For a rectangular grid such as this, the four nearest neighbors are the
only locations within the point to point distance threshold. Note that this function does
not generate the neighbor list directly and has to be called as an argument of the function
knn2nb().

> nlist <- knn2nb(knearneigh(data.Set4.1, k = 4))
> W <- nb2listw(nlist)
> Y.mod <- errorsarlm(SandDT ~ 1, data = data.Set4.1, listw = W)
> print(Y.mod$lambda, digits = 4)
 lambda
0.3299

The estimate is ˆ .λ = 0 3299. The estimate for binary spatial weights is ˆ .λ = 0 0824. In this
example there is a considerable difference, possibly due to the difference between the
weights matrices for points on the boundary.

One of the questions that will be of interest is the extent to which the method used to detrend
the data influences the results. Referring to Equation 3.1, Y x y T x y x y x y(,) (,) (,) (,),= + +η ε
different detrending methods will apportion the values of Y x y(,) in this equation to the
three components on the right-hand side in different ways. To repeat the comment of
Cressie, “one person’s deterministic trend may be another person’s correlated error struc-
ture” (by the end of this book you will be tired of reading this). In Exercise 3.8, you are
asked to repeat these calculations for data that have been detrended using median polish
and for data that have not been detrended at all.

We turn now to polygonal data. Since the data themselves are point measurements, the
creation of polygons to represent these data is somewhat arbitrary, particularly since the
field is not rectangular (Figure 3.4). The most natural choice is to create Thiessen polygons.
Given a set of points P P Pn1 2, , ..., in the plane, Thiessen polygons (also called Voronoi poly-
gons or Dirichlet cells) have the property that every polygon contains one of the points
Pi as well as every point in the region that is closer to Pi than to any other point in the set
P P Pn1 2, , ..., (Ripley, 1981, p. 38; Lo and Yeung, 2007, p. 333). When the set of points forms a
regular grid, Thiessen polygons form a square or rectangular lattice. R has the capacity to
construct Thiessen polygons using functions in the packages tripack (Renka et al., 2011),
deldir (Turner, 2011), and spatstat (Baddeley and Turner 2005).

We will first use the point pattern analysis package spatstat to create a ppp file,
which is a spatstat point format representing a point pattern data set in the two-
dimensional plane. This file is created using the constructor function ppp(), which
takes as arguments a vector of the x coordinates of the points, a vector of the y coordi-
nates, and an argument owin that defines the bounding box (see Section 2.4.3) of the
region.

> library(spatstat)
> W <- 592000
> E <- 592500
> S <- 4270300
> N <- 4271200
> cell.ppp <- ppp(data.Set4.1$Easting, data.Set4.1$Northing,
+ window = owin(c(W, E), c(S, N)))

101Statistical Properties of Spatially Autocorrelated Data

Next, we use the spatstat function dirichlet() to create a spatstat object of class
tess (for “tessellation”).

> thsn.tess <- dirichlet(cell.ppp)

Next, we follow the process we used in Section 3.5.3. We use a coercion function from
maptools to coerce the tess object into a SpatialPolygons object using the coercion
function as(). Then we use the constructor function SpatialPolygonsDataFrame() to
create the SpatialPolygonsDataFrame object thsn.spdf.

> library(maptools)
> thsn.sp <- as(thsn.tess, "SpatialPolygons")
> thsn.spdf <- SpatialPolygonsDataFrame(thsn.sp,
+ slot(data.Set4.1, "data"), FALSE)

Before we can move on, we must make sure that the ordering of the spatial data matches
the ordering of the attribute data. That is the subject of the next subsection.

3.6.2 Checking Sequence Validity

In the last section and in Exercise 3.4, we alluded to an issue that is sufficiently subtle, and
whose consequences are sufficiently dire, that it is worthwhile to emphasize it by devot-
ing an entire subsection. Look at the two lines of code just above. The first line creates the
object thsn.sp, which describes the polygon structure and contains spatial data but no
attribute data. It was created by forming Thiessen polygons around the set of point coor-
dinates in data.Set4.1, and these polygons are arrayed in an order determined by the
creation process, independent of the values in the ID field in data.Set4.1. Now look at
the following line of code. This assigns attribute data to the polygons. There is no guaran-
tee that the order of the attribute data matches the order of the polygons, and if it does not,
then the attribute data will be assigned to the wrong polygons. Therefore, in these situ-
ations one must always check to make sure that the polygon order matches the attribute
data order.

Because it is simpler to work with sf (spatial features) objects, we will use coercion to
move into this domain.

> library(sf)
> thsn.geom.sf <- st_as_sf(thsn.sp)
> str(thsn.geom.sf)
Classes ‘sf’ and ‘data.frame’: 86 obs. of 1 variable:
 $ geometry:sfc_POLYGON of length 86; first list element: List of 1
 ..$: num [1:5, 1:2] 592081 592081 592000 592000 592081 ...
 ..- attr(*, “class”)= chr “XY” “POLYGON” “sfg”
 - attr(*, “sf_column”)= chr “geometry”
 - attr(*, “agr”)= Factor w/ 3 levels “constant”,”aggregate”,..:
 ..- attr(*, “names”)= chr

Although there are no identification numbers, the 86 polygons are arranged in a particu-
lar order, namely, the order assigned to them when they were created. Again, we coerce
thsn.spdf into an sf object and look at its structure.

> thsn.sf <- st_as_sf(thsn.spdf)
> str(thsn.sf)

102 Spatial Data Analysis in Ecology and Agriculture Using R

Classes ‘sf’ and ‘data.frame’: 86 obs. of 27 variables:
 $ ID : int 1 2 3 4 5 6 7 8 9 10 ...
 $ Row : int 1 1 1 1 1 1 1 2 2 2 ...
 $ Column : int 1 2 3 4 5 6 7 1 2 3 ...
 $ Easting : num 592051 592112 592173 592234 592295 ...
 $ Northing : num 4271104 4271104 4271104 4271104 4271104 ...
...

Now we come to the important part. The data records in the data frame data.Set4.1 are
indexed by the data field ID. The polygons in thsn.sf were created based on the values
of Easting and Northing in this data frame. Therefore, the values of thsn.sf$ID should
match the order of records of this data frame. With 86 records this is easy to check.

> thsn.sf$ID
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
[45] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
[67] 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

If there are hundreds of data records, it might be less easy to visually, but we can do it with
the function all.equal().

> all.equal(1:length(thsn.sf$ID), thsn.sf$ID)
[1] TRUE

We can also check for correct alignment visually. First, we plot the attribute ID values.

> plot(thsn.spdf, pch = 1, cex = 0.1)
> text(coordinates(thsn.spdf),
+ labels=as.character(thsn.spdf@data$ID))

Next, we plot the polygon ID values and see that they match.

> plot(thsn.spdf, pch = 1, cex = 0.1)
> text(coordinates(thsn.spdf),
+ labels=lapply(thsn.spdf@polygons, slot, "ID"))

Now that we have assured ourselves that there is no misalignment of geometry and attri-
bute data, we can move on to the spatial autocorrelation tests. See Exercise 3.8 for some
practice on this topic.

3.6.3 Determining Spatial Autocorrelation

There are four cases we will consider in estimating the parameter λ of Equation 3.25 for
the Thiessen polygons, namely, the possible combinations of rook’s case and queens case
contiguity rules and binary and row normalized spatial weights. The function used to
carry out the estimation is again errorsarlm.

> nlist <- poly2nb(thsn.spdf,
+ row.names = as.character(thsn.spdf$ID), queen = FALSE)
> W <- nb2listw(nlist, style = "W")
> Y.mod <- errorsarlm(SandDT ~ 1, data = thsn.spdf, listw = W)
> print(Y.mod$lambda, digits = 4)
 lambda
0.4033

103Statistical Properties of Spatially Autocorrelated Data

The corresponding estimate for the binary rook’s case W is λ� = 0 1182. . For queen’s case
contiguity, the estimates are ˆ .λ = 0 2009 for the row normalized W and ˆ .λ = 0 0407 for the
binary W. Thus, with this data set there is little difference between the estimates for dif-
ferent contiguity rules. Not surprisingly, the rook’s case contiguity rule gives a similar
estimate to that of the corresponding nearest neighbor distance rule for point data. Which
estimate is “better”? We don’t know if any of them are any good, because the model itself
could be in error. We will leave the discussion of this issue until we take up autoregressive
models in Chapter 13.

3.7 Further Reading

The fundamental source for almost all of the material discussed in this chapter is Cliff
and Ord (1981). The seminal paper on the modeling spatial autocorrelation is generally
considered to be that of Whittle (1954). This paper explicitly draws on the analogy of spa-
tial processes with time series, using the notion of a line transect in space as a conceptual
bridge. Bartels (1979) also provides a discussion of the relationship between time series
data and spatial data.

Davis (1986) provides an extensive discussion of the properties of trend surfaces and
develops a method for testing their significance. The difficulty in distinguishing between
responses to a trend and a spatial error structure is amplified by Sokal et al. (1993). They
point out that apparent spatial autocorrelation may be due to the response of the mean to a
deterministic regional trend. They refer to this as “spurious spatial autocorrelation.”

There are a number of references that provide a more detailed discussion of creating
a spatial weights matrix W (Cliff and Ord, 1981; Anselin, 1988; Anselin and Bera, 1998;
Tiefelsdorf, 2000). Getis and Aldstadt (2004) describe a method for creating W using local
spatial statistics, which are discussed in Section 4.5.3. Several papers discuss the assign-
ment of spatial weights in various contexts. For example, Tiefelsdorf et al. (1999) describe
the effects of various choices for the structure of W on the exact distribution of Moran’s I.
Case and Rosen (1993) use a combination of spatial and attribute data to assign weights
between states to model budget development. Lacombe (2004) analyzes different methods
for generating the matrix in the context of county welfare policy.

All of the artificial spatial data sets in this book are generated using the method of
Haining (1990, p. 116), which is simple and easy to understand. This is not, however, the
only way to generate random spatial data. Griffiths (1988, Ch. 9) provides an extensive
discussion of the simulation of spatially autocorrelated data. The geoR package (Ribeiro
and Diggle, 2016) contains the function grf(), which develops a Gaussian random fields
simulation of autocorrelated data (Wood and Chan, 1994).

Finally, G. E. P. Box’s more famous quote is “all models are wrong; some models are use-
ful,” which is from Box (1979).

Exercises

 3.1 To test the sensitivity of the t-test to skewed data, carry out a Monte Carlo simu-
lation of the test using data generated from a normal and a lognormal distribu-
tion. Be careful about the value of µ for the lognormal distribution.

104 Spatial Data Analysis in Ecology and Agriculture Using R

 3.2 The Monte Carlo simulation should not be applied blindly. Consider the coin
tossing experiment conducted in Section 3.2.2. Look up the function binom.
test() and then carry out a simulation of 50 tosses of a fair coin using the fol-
lowing function:

 coin.toss <- function (n.tosses){
 z <- rbinom(1,n.tosses,0.5)
 n.heads <- sum(z)
 b <- binom.test(n.heads, n.tosses,0.5,"two.sided",0.95)
 TypeI <- b$p.value < 0.05
 }

 Use the function replicate() to run this function 10,000 times and compute
the fraction of Type I errors. Is it close to 0.05? Why not? HINT: explore the pos-
sible values that b$p.value can take on.

 3.3 Using the spdep functions described in this chapter, generate a listw object
for a four by four square lattice. Use the function listw2mat() to generate a
row normalized spatial weights matrix. Use apply() to show that the rows sum
to 1.

 3.4 Use the function expand.grid() to generate a three by three set of points
matching the lattice of Figure 3.7. Then use the spatstat functions discussed
in this chapter to generate Thiessen polygons. Use the function str() to check
whether the numbering of these polygons matches Figure 3.7. How do you have
to order the x and y sequences in expand.grid()?

 3.5 (a) Use the function read.csv() to read Data Set 2 (don’t forget to set your
working directory). From this data set, create a small data set by selecting only
those sites with longitude values between −123.2463° and −123.0124° and latitude
values between 39.61633° and 39.95469°; (b) Use the statement ?coordinates
to read about the function coordinates(). Then use this function to create a
SpatialPointsDataFrame by assigning data fields to be the coordinates of the
data set; (c) Plot the locations of the data set using the plot() function; (d) Use
the function str() to explore the structure of the SpatialPointsDataFrame.

 3.6 (a) Use knearneigh() to create a spatial weights matrix and use the function
errorsarlm() to estimate the value of λ in a spatial error model for the data set
created in Problem 3.5; (b) Give a physical interpretation of the meaning of the
terms in the spatial lag model (Equation 3.25) as applied to the data in part (a).
Does this model make sense?

 3.7 Use Monte Carlo simulation to compute the Type I error rate for a 10 by 10 square
data set created with an autocorrelation value of λ equal to 0.6. Compute the
sample mean and sample standard deviation of the replicates.

 3.8 It may help with the idea of ID misalignment to see what happens when data are
misaligned with polygons. Create a data set identical to Data Set 4.1 of Section
3.6.2 but with order of the ID values reversed so that they run from 86 to 1 and
repeat the analyses of that section on this data set.

	Botón:

